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We present a theory of the influence of band renormalization and excitonic electron-electron interaction
effects on the optical conductivity o(w) of doped bilayer graphene. Using the Keldysh formalism, we derive a
kinetic equation from which we extract numerical and approximate analytic results for o(w). Our calculations
reveal a previously unrecognized mechanism which couples the Drude and interband response and renormal-
izes the plasmon frequency, and suggest that screening must play an essential role in explaining the weakly

renormalized conductivity seen in recent experiments.
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I. INTRODUCTION

Experimental progress' over the past five years has made
it possible to isolate single-layer graphene (SLG), an atomi-
cally two-dimensional electron system based on a honey-
comb lattice of carbon atoms, and study its electronic prop-
erties. More recently similar techniques have been used to
study multilayer graphene films and other types of graphitic
nanostructures. One of the surprises in this field is that the
electronic properties of Bernal stacked bilayer graphene
(BLG) are quite distinct? from those of SLG. The low-energy
electronic excitations of a bilayer are massive and have
momentum-space Berry phase 277, while those of SLG are
massless and have Berry phase .

The optical conductivity o(w) of BLG has received a lot
of attention, both experimentally and theoretically. Theoreti-
cal studies®”’ of o(w) in BLG have so far entirely neglected
the interactions effects that are known to be crucial in the
optical response of regular semiconductors.®® The noninter-
acting electron interpretation of o(w) data'®!3 does never-
theless appear to be generally successful, surprisingly so
since BLG is generally expected to display stronger interac-
tion effects than SLG because of its parabolic band disper-
sion. For example band-structure renormalizations are
expected'* to be relatively modest in SLG, but substantially
stronger in the BLG case. Indeed the interacting electron
problem in bilayer graphene poses a number of interesting
new questions because of its unique massive chiral quasipar-
ticles.

These circumstances call for the theoretical analysis of the
influence of interactions on o(w) presented in this paper. We
use a quantum kinetic equation (QKE) derived using the
Keldysh formalism to take electron-electron (e-e) band
renormalization and excitonic effects into account on an
equal footing (thus correctly guaranteeing gauge invariance).
We show that although the energy dispersion of BLG is para-
bolic, its optical properties are very different from those of
regular semiconductors or semiconductor bilayers: (i) A new
coupling between the Drude (i.e., intraband) and interband
optical transition channels follows from the chirality of the
BLG band eigenstates; (ii) the Drude-interband coupling
(DIC) is responsible for a renormalization of the leading-
order long-wavelength plasmon dispersion; and (iii) because
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of the chirality structure, screening is responsible for an es-
pecially strong suppression of interaction effects.

II. QUANTUM KINETIC EQUATION

States near the Fermi level of bilayer graphene are de-
scribed by the two-band envelope function Hamiltonian? H
=—€,0-n, where €,=k>/2m, n=(cos 2¢,,sin 2¢,), and o is
the Pauli-matrix vector which acts on the layer pseudospin
degrees of freedom. [We set fi=1 throughout restoring it
only in the final expressions for o(w)]. This Hamiltonian is
valid when v zk <y, where vy=10° ms~! is the quasiparticle
velocity of SLG and y;,=0.4 eV (Refs. 11 and 15) is the
interlayer hopping amplitude. (We neglect trigonal warping,
which is important only at low densities and energies.) Al-
though conduction and valence-band eigenenergies have the
same quadratic dispersion in regular semiconductors and
BLG, the eigenfunction properties differ. In the BLG case
the conduction and valence-band eigenstates are both linear
combinations of 7 orbitals, whereas in the regular semicon-
ductor case the two bands have orbitals with different atomic
character. We will see that this property alone profoundly
alters the o(w) theory. Furthermore bilayer graphene is
gapless.®

To incorporate band renormalization and excitonic effects
on an equal footing, we derive a quantum kinetic equation
for bilayer graphene using the Keldysh formalism and a first-
order exchange-interaction approximation for the interaction
self-energy. Importantly the interaction term in the envelope
function is diagonal!” in pseudospin labels at each interaction
vertex. To obtain a kinetic equation, it is customary to em-
ploy a Wigner representation in which the relative coordi-
nates r=r;—-r, and 7=t —t, in the Keldysh Green’s
function'® are Fourier-transformed to obtain momentum and
energy variables k and &, and then perform a gradient expan-
sions with respect to the ‘“center-of-mass” coordinates R
=(r;+r,)/2 and t=(t;+1,)/2. The 2 X 2 distribution function
fi is obtained'® by integrating the Keldysh Green’s function
over energy. For the case of the bilayer graphene Hamil-
tonian we find that
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where

Se=—2 Vicrfer (2)

k'

is the quasiparticle exchange self-energy. The property that
the 2 X2 self-energy matrix at one wave vector is simply an
interaction-weighted average of distribution function matri-
ces at different wave vectors is a consequence of the model’s
pseudospin independent interactions.

We consider linear response to an ac electric field,
E=Ep ™, and write fi=fO+A)  where £
=(1/2)2 oenp(&,)(1-po-n) is the equilibrium distribu-
tion function. Here np(x)= 6(—x) is the Fermi function at zero
temperature, and &, =ue€—ep is the quasiparticle energy
rendered from the Fermi level (u=1 for conduction band and
—1 for valence band). Using Eq. (1) we find that

—iof) —ileo - n+3, =S +i2 Vi klr),ﬂko)], (3)

k'

where %, now refers to the self-energy evaluated using f
=% in Eq. (2), and
% g. (2), an

Si=—(e€ - k/2) 2 [0np(é,)/0K)(1 - por - )

u==

+(1/k) X pnp(€,)(e€ X k) - (o X n) (4)

p==

is the driving term of the QKE. The first term in Eq. (4)
drives intraband transitions and the second term interband
transitions. The second term on the right-hand side of Eq. (3)
accounts for changes in the self-energy in the nonequilibrium
state. Because of this term, Eq. (3) is an integral equation
which can only be solved numerically. The distribution func-
tion can also be expressed as a sum of intraband and inter-
band contributions,

AV =(E-BIAK) + o - nB(k) + (o X n),G(k) + o,H(k)]
+(E X k) [i(o X n),C(k) + o.D(k) + o - nE(k)
+F(k)], (5)

where the 1,0-n,(0-Xn),, and o, components of each con-
tribution capture, respectively, changes in total density, con-
duction versus valence-band density difference, interlayer
coherence, and layer polarization.

Substituting Eq. (5) into Eq. (3) yields a set of eight
coupled equations. We find that E,F,G, and H are all iden-
tically zero,

A== B = 30k~ k), 6)

and C(k) and D(k) satisfy the following set of coupled inte-
gral equations:
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wC(k) + 8,D(k) = O(k — k) {— z + &Z(k)] , (7)

5,.C(k) + wD(k) = 0k — kp)[ 5241 (k) + 62%2(k)],  (8)

where 8,=2g,+3,—2,_ is the energy needed to create a
vertical interband excitation,

Siu=— 2 2 Vi Okp =N ) (1 + pX cos 2¢)/2,  (9)

A== k'

is the equilibrium self-energy in band u, ¢y/=dp — ¢y, and
the nonequilibrium self-energy changes are

833(k) = 2, Viyr €08 i D(k'), (10)

k'

5E¢’1(k) = E Vk—k’ Cos (]5](!]( Cos 2¢krkc(k1), (1 1)
kl

SSP2(k) == i, Vi sin ¢y sin 2¢h, Bk, (12)
k!

Equations (7) and (8) are the equations of motion for the
interlayer coherence C(k) and layer polarization D(k) com-
ponents of the distribution function and describe precession
of valence-band pseudospins in the effective magnetic fields
due to band-energy separation (&) and to nonequilibrium
self-energy corrections. There are three contributions to the
nonequilibrium self-energy: 637, 62%!, and 292, 537 origi-
nates from layer polarization and 6%%! from interband co-
herence. 62%2 couples the Drude response [B(k)] and the
interband response [C(k) and D(k)]. This Drude-interband
coupling mechanism is one of the principle results of our
paper. It appears because the Drude conduction-band Fermi-
surface oscillation in an ac electric field changes the e-e in-
teraction exchange potential experienced by precessing
valence-band pseudospins outside the Fermi surface.

The current can be evaluated from the perturbed distribu-
tion function using J=g,g.e Tr[Z(1/2){j, ﬁ(l)}], where
g,8,=4 is the product of the valley and spin degeneracies
and jk=&H/&k:—(k/m)[((rlé))é—(o-xIé)zﬁ] is the current
operator. It then follows from Eq. (5) that the conductivity

o(w)=— 2¢ f ’ dkk*[B(k) + iC(k)]. (13)
mm J

III. RENORMALIZATION OF DRUDE WEIGHT AND
PLASMON FREQUENCY

Before discussing our general results we study the influ-
ence of DIC on the Drude weight. At low frequencies the
noninteracting response is the out-of-phase oscillations of the
Fermi surface with respect to the electric field which is cap-
tured by B(k)*i/w. Because of the self-energy correction
5342, there is also an interband response C(k) with the same
frequency dependence [See Eq. (8)]. When a momentum re-
laxation time 7 is added to the theory the i/ w contribution to
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FIG. 1. (Color online) (a) Renormalized Drude weight D versus
density n. The enhancement of the Drude weight increases with
decreasing density. (b) Band renormalization (X;,—2;_)/&p at k
=kp versus density. These results were evaluated with Coulombic
electron-electron interactions and dielectric constant k=1, corre-
sponding to a suspended graphene sample.

the conductivity evolves into a Drude peak contribution pro-
portional to 7/(1—iw7). The coefficient of this contribution
is known as the Drude weight D. When DIC is included we
find that for bilayer graphene the Drude contribution to o)
is

(2e*ep/mh) Dt

l-ioT

O'Da)

(14)

where the interaction-induced Drude weight renormalization
is given to leading order in e by

¢ fwdkR< k) (15)
2'7Th8 Fdkp kF

Here  R(x)=(4/15x){(x+1)(x*—x2+ DE[4x/ (x+1)?]- (x2
+1)(x=1)*(x+1)K[4x/(x+1)?]} and K,E are, respectively,
complete elliptic integrals of the first and second kind.

One important consequence of DIC is renormalization of
the plasmon frequency. In regular semiconductors with para-
bolic dispersion, the plasmon frequency w, has no long-
wavelength interaction renormalization'® because of Galilean
invariance. Since graphene systems are not Galilean invari-
ant, their plasmon frequencies are?® renormalized. Using the
well-known relation between the optical conductivity and the
polarizability, o(w)=lim, [ie*wll(q,®)/q*], the real part
of the polarizability for vpg<w and w<<gy is Re (g, w)

D=1+

=(2¢e Fﬁ/ m)(q/ w)?. The renormalized plasmon frequency is
then given by the zero of the dielectric function e(g,w)=1
-V, Rell(q,w)=0. For BLG we find that

wé =4¢%e,Dg. (16)

Figure 1(a) shows renormalized Drude weights D from the
full numerical calculations described below.
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FIG. 2. (Color online) Real part of the optical conductivity
Re o(w) vs frequency o at density n=10'2 cm™ for unscreened
(black) and screened (blue/gray) e-e interaction. Results for screen-
ing with k=1 (corresponding to suspended bilayer graphene) and
k=4 (corresponding to a bilayer on a SiO, substrate) are quantita-
tively similar and the gray/blue lines show the results for k=1. The
disorder broadening is taken as I'=1/7=0.1 meV (solid line) and
1 meV (dot-dashed line). The ideal noninteracting case is plotted as
the dashed thin gray/red line.

IV. OPTICAL CONDUCTIVITY

The full o(w) at arbitrary interaction strength is obtained
by solving the coupled integral equations Egs. (7) and (8)
numerically, letting @ — w+i7"'. We can approximately ac-
count for screening corrections to our first-order interaction
self-energy by replacing the bare Coulomb interaction by its
Thomas-Fermi (TF) statically screened counterpart.

When screening is neglected, interactions significantly al-
ter o(w) in three respects, as illustrated in Fig. 2. First, the
interband absorption threshold is changed dramatically from
w=2ep to w=5¢gp. This effect is analogous to band-gap
renormalization in regular semiconductors, with the Fermi
level playing the role of a gap because of Pauli blocking. The
threshold shift is equal to EkF+—EkF_ [Fig. 1(b)]. Second, the
value of o(w) is no longer universal above the absorption
threshold; instead it shows a decreasing trend with w, first
reaching above and then dropping below the noninteracting
value e?/2#. Third, an absorption peak appears below the
threshold. This Mahan exciton®' feature is a well-understood
artifact of our simple self-energy approximation. Because of
electron-scattering processes (including Fermi-surface fluc-
tuations due to intraband electron-hole excitations?? and im-
purity scattering) in the conduction band not captured by our
self-energy approximation, the Mahan exciton is invariably
unstable. In Fig. 2 we illustrate broadening of the Mahan
exciton due to disorder.

The results obtained when we screen the interactions in
our self-energy expression using a TF approximation are
shown in gray in Fig. 2. The TF screening wave vector for
BLG is given by grp=4me?*/k, a constant independent of
electron density. Surprisingly, we find that with screening (1)
the interband absorption threshold shift nearly disappears,
(2) Re o(w)=¢%/2# above the threshold, and (3) the Mahan
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exciton bound state vanishes. In short, the optical conductiv-
ity Re o(w) behaves essentially like that of a noninteracting
system.

To shed light on this result, we observe that the TF wave
vector grr=2.62X10° m~'/k for BLG is extremely large
compared to all momentum scales of electronic transitions
and is, in fact, greater than the momentum cutoff &,
=\2my, for both suspended (k=1) and substrate-mounted
(k=4) bilayers. In a TF screening approximation: V,
=2me?/qrr behaves as short-range interaction Vj, in the re-
gime of interest e, w <y, with the consequence that in Egs.
(9)—(12) the band renormalization

D= 2 Vof dyry cos 2y, (17)

and the nonequilibrium self-energies

O%F o Vof dyry cos Py,
534! o Vof depyry cos ¢y cos 2k,

(52¢’2 x V()f dd)k’k sin ¢k’k sin 2¢k’k (18)

all vanish. Therefore, strong screening in BLG restores the
optical conductivity essentially to its noninteracting value.
This remarkable result is peculiar to BLG, since its double-
chirality gives rise to spinors with s-wave and d-wave com-
ponents (rather than s wave and p wave as in SLG), which
do not couple to p-wave optical dipole transitions through an
s-wave short-range interaction. For the case of gapped BLG,
since our theoretical results follow principally from pseu-
dospin chirality and will not be influenced by an external
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potential—we expect that on the basis of current results, in-
teraction effects in these gapped systems with finite doping
will also be suppressed.

Finally we comment on the experimental implications of
our findings. We interpret the weak experimental'*'3 absorp-
tion threshold features as evidence for short-range screened
e-e interactions. We recognize, however, that the static
screening we use could overstate the reduction in interaction
range and that interaction effects are likely to persist to some
degree in o(w), especially in suspended bilayers for which
the dielectric-environment portion of the screening is absent.
Interaction effect could be identified experimentally via the
o, renormalizations we predict, for example using electron
energy-loss spectroscopy studies of suspended samples. We
also remark that in employing the massive two-band model
for BLG, we have neglected transitions to the two bands
which are respectively located at an energy =1, above (be-
low) the conduction (valence) band described in the two-
band model, and interaction effects might be more pro-
nounced in such intra-conduction band and intra-valence
band transitions.

V. CONCLUSION

In conclusion, we have developed a theory for the e-e
interaction effects on the optical conductivity o(w) of doped
bilayer graphene. We discover a coupling effect which
couples the Drude and interband response of the optical con-
ductivity, and an accompanying renormalization of the
leading-order plasmon frequency. We also find that screening
dramatically suppresses band renormalization and excitonic
effects, restoring o(w) very close to the universal value
e?/2#h above the absorption threshold.
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